Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 21(1): 510, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129829

RESUMO

BACKGROUND: Exposure to general anesthesia influences neuronal functions during brain development. Recently, interneurons were found to be involved in developmental neurotoxicity by anesthetic exposure. But the underlying mechanism and long-term consequences remain elusive. METHODS: Pregnant mice received 2.5% sevoflurane for 6-h on gestational day 14.5. Pentylenetetrazole (PTZ)-induced seizure, anxiety- and depression-like behavior tests were performed in 30- and 60-day-old male offspring. Cortical interneurons were labeled using Rosa26-EYFP/-; Nkx2.1-Cre mice. Immunofluorescence and electrophysiology were performed to determine the cortical interneuron properties. Q-PCR and in situ hybridization (ISH) were performed for the potential mechanism, and the finding was further validated by in utero electroporation (IUE). RESULTS: In this study, we found that maternal sevoflurane exposure increased epilepsy susceptibility by using pentylenetetrazole (PTZ) induced-kindling models and enhanced anxiety- and depression-like behaviors in adolescent offspring. After sevoflurane exposure, the highly ordered cortical interneuron migration was disrupted in the fetal cortex. In addition, the resting membrane potentials of fast-spiking interneurons in the sevoflurane-treated group were more hyperpolarized in adolescence accompanied by an increase in inhibitory synapses. Both q-PCR and ISH indicated that CXCL12/CXCR4 signaling pathway downregulation might be a potential mechanism under sevoflurane developmental neurotoxicity which was further confirmed by IUE and behavioral tests. Although the above effects were obvious in adolescence, they did not persist into adulthood. CONCLUSIONS: Our findings demonstrate that maternal anesthesia impairs interneuron migration through the CXCL12/CXCR4 signaling pathway, and influences the interneuron properties, leading to the increased epilepsy susceptibility in adolescent offspring. Our study provides a novel perspective on the developmental neurotoxicity of the mechanistic link between maternal use of general anesthesia and increased susceptibility to epilepsy.


Assuntos
Epilepsia , Pentilenotetrazol , Humanos , Gravidez , Feminino , Camundongos , Animais , Masculino , Sevoflurano/metabolismo , Sevoflurano/farmacologia , Pentilenotetrazol/toxicidade , Pentilenotetrazol/metabolismo , Exposição Materna/efeitos adversos , Interneurônios/metabolismo , Epilepsia/induzido quimicamente
2.
Front Plant Sci ; 9: 663, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868105

RESUMO

Valsa mali, a parasitic fungus, is a destructive pathogen of apple tree that causes heavy economic losses in China. The pathogen secretes various cell wall-degrading enzymes (CWDEs) that degrade plant cell-wall components, and thus facilitate its entry into host cells. Therefore, functional analysis of the genes encoding CWDEs is necessary to understand virulence of V. mali toward apple tree. Here, we identified and cloned an endo-ß-1,4-xylanase gene, VmXyl1 in V. mali. The full-length cDNA of VmXyl1 is 1626 bp containing 5'- and 3'-non-coding regions, as well an open reading frame of 1320 bp that encodes a protein with a calculated molecular mass and an isoelectric point of 43.8 kDa and 4.4, respectively. The predicted amino acid sequences showed significant homology to a family GH10 of glycosyl hydrolases. The apple branch extract and beechwood xylan, but not glucose, induced the expression of VmXyl1. Furthermore, VmXyl1 had high expression levels in the apple tree bark during the pathogen infection. The deletion of VmXyl1 did not affect mycelia growth; however, it significantly reduced pycnidia formation in V. mali. The deletion strains showed a reduced virulence toward apple leaves and twigs. Moreover, the mutant strains had reduced endo-ß-1,4-xylanase activity and growth when cultured using beechwood xylan as the only carbon source. Reintroducing wild-type VmXyl1 into the mutant strains rescued the defect phenotype. We conclude that VmXyl1 determines the virulence of V. mali toward apple tree. These results provide valuable insight into the plant-pathogen molecular interactions.

3.
Plant Physiol Biochem ; 106: 64-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27139585

RESUMO

Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and ß-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves.


Assuntos
Resistência à Doença/efeitos dos fármacos , Malus/imunologia , Malus/microbiologia , Phyllachorales/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Catecol Oxidase/metabolismo , Quitinases/genética , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Peróxido de Hidrogênio/metabolismo , Malus/efeitos dos fármacos , Malus/genética , Peroxidases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Phyllachorales/efeitos dos fármacos , Phyllachorales/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...